Elliptic and hyperbolic quadratic eigenvalue problems and associated distance problems
نویسندگان
چکیده
Two important classes of quadratic eigenvalue problems are composed of elliptic and hyperbolic problems. In [Linear Algebra Appl., 351–352 (2002) 455], the distance to the nearest non-hyperbolic or non-elliptic quadratic eigenvalue problem is obtained using a global minimization problem. This paper proposes explicit formulas to compute these distances and the optimal perturbations. The problem of computing the nearest elliptic or hyperbolic quadratic eigenvalue problem is also solved. Numerical results are given to illustrate the theory. © 2003 Elsevier Inc. All rights reserved.
منابع مشابه
Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems
An important class of generalized eigenvalue problems Ax = λBx is those in which A and B are Hermitian and some real linear combination of them is definite. For the quadratic eigenvalue problem (QEP) (λ2A+ λB + C)x = 0 with Hermitian A, B and C and positive definite A, particular interest focuses on problems in which (x∗Bx)2 − 4(x∗Ax)(x∗Cx) is one-signed for all non-zero x—for the positive sign...
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملThe Hyperbolic Quadratic Eigenvalue Problem
The hyperbolic quadratic eigenvalue problem (HQEP) was shown to admit the Courant-Fischer type min-max principles in 1955 by Duffin and Cauchy type interlacing inequalities in 2010 by Veselić. It can be regarded as the closest analogue (among all kinds of quadratic eigenvalue problems) to the standard Hermitian eigenvalue problem (among all kinds of standard eigenvalue problems). In this paper,...
متن کاملAlgorithms for hyperbolic quadratic eigenvalue problems
We consider the quadratic eigenvalue problem (QEP) (λ2A+λB+ C)x = 0, where A,B, and C are Hermitian with A positive definite. The QEP is called hyperbolic if (x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ Cn. We show that a relatively efficient test for hyperbolicity can be obtained by computing the eigenvalues of the QEP. A hyperbolic QEP is overdamped if B is positive definite and C is positive ...
متن کاملLp Embedding and Nonlinear Eigenvalue Problems for Unbounded Domains
Let R denote real iV-dimensional Euclidean space. Then it is a well-known fact that the imbedding of the Sobolev space Wi,2(R) in LP(R ) is bounded for 2g>pS2N/(N-2), but is definitely not compact. Consequently the theory of critical points for general isoperimetric variational problems defined over arbitrary unbounded domains in R has been little investigated despite its importance. Indeed the...
متن کامل